Climate's Long-term Impacts on Metro Boston (CLIMB)

Matthias Ruth

Professor and Director, Environmental Policy
Program School of Public Affairs
University of Maryland, College Park

5th State and Local Climate Change Partners' Conference Annapolis, Maryland, November 20-22, 2002

Climate Change and Urban Infrastructure

- ☐ Climate's Long-term Impacts on Metro Boston (CLIMB)
 - Study Region
 - Structure
 - Methodology
 - Applications and Findings
- ☐ Six Challenges for Research and Policy

Metro Boston

CLIMB

- Project Structure

CLIMB

Information Management, Modeling, and Scenario Development –

Changes in Temperature Mean and Variance

(Source: IPCC 2001)

Bootstrapping

Bootstrapping Process to Generate Climate Time Series

Climate Data Software

Climate Data Software – Daily to Hourly Drill Down –

Sea Level Rise Illustration for Nahant

Sea Level Rise Boston Harbor

Storm Surges

Scenarios

Title	Policy	Demographic	Economic	Technology
"Ride It Out"	Present trends in region continue. There are no adaptation actions. Current subsidies for automobiles continue.	Same as current MAPC scenario of continued sprawl, low population growth rate, major growth at fringes and outside of region.	Same employment by sector as current MAPC scenarios.	Low rate of penetration of green and innovative technology by sector.
"Green"	Restrictions on construction locations. Stronger bldg codes. Renewable energy. More mass transit. Natural hazard zoning. No more sea walls except for major commercial areas. Emphasis on more centralized development.	Same population growth as "Ride It Out" but more centralized in line with policy scenario.	Same as above.	Higher rate of green technology penetration than "Ride It Out".
"Build Way Out"	Same as "Ride It Out" but replace and protect systems as they fail.	Same as "Ride It Out"	Same as "Ride It Out"	Same as "Ride It Out"

Storm Surge Flooding

Scenario	Cummulative Damage (mil of \$ over 100 years)	Cummulative Land at Risk (Res, Comm, Ind Hectares)		
Continue Present Conditions	593.3	4,597.3		
RIO - CCC Climate Scenario, MAPC Population Scenario	2,419.2	18,955.8		
Green - CCC Climate, no development, no reoccuring damages	86.3	672.9		
BYWO	Length of Protection	Wetlands At Risk (Hectares)		
Existing Walls	(km) 553.1	805.5		
New Walls	579.8	2110.1		
Projected	in progress	in progress		

Transportation FEMA Flood Map for CLIMB Region

Transportation Flood Plains in Region 1

Transportation Overlay of Traffic Analysis Zones

Transportation

Transportation Scenario Results

2025		Riverine Flooding		Coastal Flooding		Combined	
Model		100 Year	500 Year	100 Year	500 Year	100 Year	500 Year
Results	Base	change	change	change	change	change	change
Links Deleted	0	445	673	196	236	641	908
Travel Impacts							
Total Trips	16,454,769	-96,905	-164,576	-165,272	-184,876	-193,440	-224,945
VMT	158,717,552	1,824,400	3,358,688	-1,711,168	-2,079,520	1,321,200	3,177,536
VHT	4,562,397	197,655	346,581	-43,712	-53,685	206,561	380,685
Avg. Speed	34.79	-1.06	-1.77	-0.04	-0.05	-1.23	-2.04

Transportation Scenario Results

Water Quality Simulations for Assabet River

Model Results for Various Scenarios

Average Monthly Temperature and Electricity Consumption

Average Monthly Temperature and Heating Fuels Consumption

Monthly Natural Gas & Heating Oil per Employee (Thousand Btu/employee)

Residential Electricity and Heating Fuel Use

Electricity per Employee (kWh/employee/month)

Heating Fuels per Employee (1000 btu/employee/month)

Commercial Electricity and Heating Fuel Use

Changes in Electricity and Heating Fuel Uses

Change in Heating Fuel Use

CLIMB Regional Daily Mortality Rate and Average Temperature

Temperature - Health Relationships

10 Bootstrap Projections of Heat-related Mortality

Heat-Related Deaths per Year

10 Bootstrap Projections of Cold-related Mortality

Cold-Related Mortality per Year

Projections of Temperature-related Mortality

Deaths per Year

Six Challenges for Research, Education and Decision Making

- ☐ Avoid Environmental Ambulance Chasing
- ☐ Foster Diversity of Problem Solving Approaches
- ☐ Leverage Interdependencies among Infrastructures and Institutions
- ☐ Implement Forward-looking Design Criteria and Standards
- ☐ Get Multiple Bangs for the Buck
- □ Promote International Collaboration

